
CS 24000 L04
Week 9

Malloc, Dynamic Memory,
and Scope

Memory Layout Review
● Local variables appear on the Stack
● Dynamic variables* appear on the

Heap
● Global, uninitialized variables go in

BSS
● Global, initialized variables (like

format strings) go in Data
● Executable code goes in Text

* meaning those declared with
malloc/free

How Malloc Works
When you initialize a pointer using

malloc, the OS finds an unused space in
the heap, claims it, and returns the address

to you.

If you never call free, this memory never

gets reclaimed by the OS, even if it goes

out of scope. This is called a dangling
pointer.

void *ptr = malloc(100)

int *int_arr = malloc(100*sizeof(int))

doctor_t *docs = malloc(100*sizeof(doctor_t))

Free Space (~3GB)

Memory Fragmentation
Calling free can fragment your memory

space. This is expected.

void *ptr = malloc(100)

Free Space (400 bytes)

doctor_t *docs = malloc(100*sizeof(doctor_t))

Free Space (~3GB)

free(int_arr) yields the following:

Scope: Stack vs. Heap
● Any local variables are declared on the stack. These only exist in the current

“stack frame” (i.e., within curly brackets{})

● Any dynamic memory allocations are on the heap. These never go out of scope,

but can be lost.

Common error I’ve seen in HW8:
struct *ptr = malloc(sizeof(struct));

struct tmp = *ptr;

ptr2->next = &tmp;

// This creates a local copy of whatever was in ptr, not the original memory location

// Once the current stack frame ends, this copy goes out of scope and is destroyed

